Evaluating Syntactic Properties of Seq2seq Output with a Broad Coverage HPSG: A Case Study on Machine Translation

University of Massachusetts Amherst

Johnny Wei¹, Khiem Pham², Brian Dillon¹, Brendan O'Connor¹ ¹University of Massachusetts, Amherst ²San Jose State University jwei@umass.edu

College of Information and **Computer Sciences**

Summary:

- Goal: Evaluate grammaticality and syntactic properties of seq2seq output.
- Key idea: Train a seq2seq model on examples where the output sequence is in an HPSG. Observe output with respect to the same grammar.

Grammaticality

100 samples

- **60** ungrammatical
- 5 ungrammatical subject verb agreement 5 ungrammatical - determiner noun agrm 1 ungrammatical - both agreement errors **30** grammatical 5 excluded
- Human grammaticality judgments of 100 cases that are exhaustively unparseable (3.2% of total test set).

• Advantages: (1) The HPSG grammar is language-like. (2) Directly evaluates sequences produced in practice. (3) HPSG gives detailed analyses of syntactic constructions.

The English Resource Grammar (ERG)

- The ERG is an HPSG, a highly lexicalized constraint based linguistic formalism.
- It is a rule-based grammar with 35K lexical entries and 250 syntactic rules. Parses 85% of Wikipedia.
- Train a vanilla seq2seq to translate $FR \rightarrow EN$, where the reference sentence is in the ERG.

Rule Statistics & Discriminative Analysis

Figure 1. Rule usage counts of the reference Figure 2. Ratio of each rule count in gramand grammatical NMT translations. matical NMT translations to reference by rank.

	Reference	NMT		
Rule Type	Annotations	Rule Type	Annotations	
xp_brck-pr	Paired bracketed phrase	j_sbrd-pre	Pred.subord phr fr.adj, prehead	
cl-cl_runon	Run-on sentence w/two clauses	n-j_j-cpd	Compound from noun+adj	
np-hdn_cpd	Compound proper-name+noun	j_n-ed	Adj-phr from adj + noun+ed	
vp_sbrd-prd-prp	Pred.subord phr from prp-VP	aj-np_int-frg	Fragment intersctv modif + NP	
hd-aj_int-sl	Hd+foll.int.adjct, gap in adj	vp_sbrd-prd-aj	Pred.subord phr from adjctv phr	
hd-aj_vmod	Hd+foll.int.adjct, prec. NP cmp	np_frg	Fragment NP	
vp_np-ger	NP from verbal gerund	flr-hd_nwh	Filler-head, non-wh filler	
mrk-nh_atom	Paired marker + phrase	hdn-aj_rc-pr	NomHd+foll.rel.cl, paired pnct	
vn shrd-nre	Pred subord phr fr VP prehead	sh-hd me	Head_subject main clause	

Figure 1. A test set source reference pair and the seq2seq NMT translation.

Parse NMT output with ERG. Record parseability. If parseable, record best ERG derivation.

Parseability

	Strict		Informal		Unpar-
Source	Full	Frag	Full	Frag	seable
Ref	64.7	2.4	31.5	1.4	0.0
NMT	60.5	3.0	28.1	1.6	6.8
Δ	-4.2	+0.6	-3.4	+0.2	+6.8

- 93.2% is ERG-parseable.
- Among the unparseable 7%, only 45% cases have

num-n_mnp Measure NP from number+noun num_prt-det-nc Partitive NP fr.number, no cmp

Table 3. The most discriminatory syntactic rule usages between reference and NMT derivations, ranked by a logistic regression with sparsity penalty.

Qualitative Analysis

• Sample those sentences where reference or NMT translation uses a rule but the other translation does not.

je le répète, vous avez raison. French Reference i repeat ; you are quite right . NMT Output i repeat, you are right.

quel paradoxe !

what a paradox !

what a paradox this is !

French

Reference

NMT Output

- cl-cl runon
- Discriminates towards reference translations.
- np_frg
 - Discriminates towards NMT translations.
- NMT translates more literally of French source; human translations of syntactic rules are not as faithful.

search space exhausted.
Table 1. Parseability by root condition.

Equation Feature 0.313 LP NMT $\log P_m(S_o)$ LP Unigr. (src-fr) 0.289 $\log P_u(S_i)$ LP Unigr. (ref-en) $\log P_u(S_r)$ 0.273 LP Unigr. (out-en) $\log P_u(S_o)$ 0.304 Length Output $|S_o|$ -0.320 $\frac{\log P_m(S_o)}{|S_o|}$ Mean LP 0.093 $-\frac{\log P_m(S_o)}{\log P_u(S_o)}$ 0.057 Norm LP

Table 2. Correlation of parseability
 with various statistics.

• Correlations for the binary parseability variable (+1 parseable).

- NMT LP scores have highest correlation.
- NMT LP correlation only slightly higher than unigram.

Future Directions

• Ablating training data to observe whether some syntactic constructions can be learned without supervision.

• Correlating differences in syntactic and semantic representation with human judgments.

• Presenter is currently applying to PhD programs with an interest in parsing + language generation.