1 An Unmeasurable Set

Proof. My textbook says that the following is a standard counterexample to all measurable sets. We may define an equivalence relation (Lemma I) such that

\[x \approx y \iff \text{if } x - y \text{ is rational} \]

and the equivalence relation partitions \(\mathbb{R} \) into disjoint non-empty equivalence classes (Remark I). There are uncountable many equivalence classes as they map to the irrationals. Using the Axiom of Choice,\(^1\)\(^2\) we can construct a set \(A \) which contains an element in \([0, 1)\) from every equivalence class (Lemma II). Now we construct more sets using an enumeration \((x_n)_{n=1}^{\infty}\) of the rationals in \((-1, 1)\) by taking

\[A_n = A + x_n \]

and these sets are pairwise disjoint (Lemma III). We can bound the unions of \(A_n \) with

\[(0, 1) \subset \bigcup_{n=1}^{\infty} A_n \subset (-1, 2) \]

and with this union we can show that \(A \) is not measurable by contradiction. Falsely assume \(A \) is measurable. Then \(\forall n : m(A_n) = m(A + x_n) = m(A) \). We have

\[
m(0, 1) \leq m \left(\bigcup_{n=1}^{\infty} A_n \right) \leq m(-1, 2)
\]

\[
1 \leq \sum_{n=1}^{\infty} m(A_n) = \sum_{n=1}^{\infty} m(A) \leq 3
\]

Now these bounds tell us that neither \(m(A) = 0 \) and \(m(A) < 0 \) is possible. Therefore \(A \) must not be measurable.

Lemma I. \(x \approx y \iff \text{if } x - y \text{ is rational} \) is an equivalence relation on \(\mathbb{R} \). For a relation to be an equivalence relation it must satisfy reflexive, symmetric, and transitive properties. The relation is reflexive as for any \(x, x - x = 0 \) which is rational. The relation is symmetric as \(x - y = -(y - x) \) and sign does not affect rationality. We will now prove transitivity. If \(x \approx y \) and \(y \approx z \) then \(x - y = q_0 \) and \(y - z = q_1 \) for some rationals \(q_0, q_1 \). Now \((x - y) + (y - z) = q_0 + q_2 = x - z \). Since \(q_0 + q_1 \) is rational, then \(x \approx z \), so the relation is transitive. We can conclude that the relation is an equivalence relation.

Lemma II. The set \(\mathcal{T} \cap [0, 1) \) always contains some element, for any equivalence class \(\mathcal{T} \). Every equivalence class is non-empty so there is some real \(r \). Let \(\lfloor r \rfloor \) denote the largest integer in \((r - 1, r]\), so that

\[
r \approx r - \lfloor r \rfloor \quad \text{and} \quad r - \lfloor r \rfloor \in [0, 1)
\]

as \(r - \lfloor r \rfloor \) always has the same rationality as \(r \). We can conclude that \(r - \lfloor r \rfloor \in \mathcal{T} \cap [0, 1) \).

Lemma III. Since each irrational in \(r \in A \) was in a separate equivalence class to begin with, adding a rational to each item does not change any item’s equivalence class. Equivalence classes are disjoint, so we only need to consider each equivalence class. As \(r + x_n \) is unique for all \(n \), \(A + x_n \) is disjoint from all the other sets.

Lemma IV. The infinite union of \(A_n \) contains all elements from \((0, 1)\). For any irrational \(r \in (0, 1) \), there is an irrational in \(r_0 \in A \) where \(r_0 - r \in \mathbb{Q} \), as \(A \) contains every irrational form shifted into \([0, 1)\). Then \(r - r_0 = x_n \) for some \(n \), and \(r_0 \in A_n \). The right inclusion is simple. Since \(A \subset [0, 1] \), and the rationals \(x_n \)

\[\text{https://en.wikipedia.org/wiki/Axiom_of_choice} \]

\[\text{The Axiom of Choice informally states that for any collection of non-empty bins (even uncountable ones), it is possible to construct a set containing an element from each bin.} \]
range from $(-1, 1)$, all numbers in any A_n range from $(-1, 2)$.

Remark I. Intuitively, the equivalence classes of $x \approx y$ are cosets $\tau = r + \mathbb{Q}$ which contain all the numbers a rational distance from r. For any rational q, $\tau = q + \mathbb{Q} = \mathbb{Q} = \emptyset$. For any irrational r, $\tau = r + \mathbb{Q}$. If $x = r + q_0 \in r + \mathbb{Q}$, $x \approx y$ if and only if $y \in r + \mathbb{Q}$. Equivalence classes partition the set they are defined on into disjoint non-empty sets, and the proof can be found in some abstract algebra textbook.