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1 An Unmeasurable Set

Proof. My textbook says that the following is a standard counterexample to all measurable sets. We may
define an equivalence relation (Lemma I ) such that

x ≈ y ⇐⇒ if x− y is rational

and the equivalence relation partitions R into disjoint non-empty equivalence classes (Remark I ). There are
uncountable many equivalence classes as they map to the irrationals. Using the Axiom of Choice,1,2 we
can construct a set A which contains an element in [0, 1) from every equivalence class (Lemma II). Now we
construct more sets using an enumeration (xn)∞n=1 of the rationals in (−1, 1) by taking

An = A + xn

and these sets are pairwise disjoint (Lemma III ). We can bound the unions of An with

(0, 1) ⊂
∞⋃

n=1

An ⊂ (−1, 2)

and with this union we can show that A is not measurable by contradiction. Falsely assume A is measurable.
Then ∀n : m(An) = m(A + xn) = m(A). We have

m(0, 1) ≤ m

( ∞⋃
n=1

An

)
≤ m(−1, 2)

1 ≤
∞∑

n=1

m (An) =

∞∑
n=1

m (A) ≤ 3

Now these bounds tell us that neither m(A) = 0 and m(A) < 0 is possible. Therefore A must not be
measurable.

Lemma I. x ≈ y ⇐⇒ if x− y is rational is an equivalence relation on R. For a relation to be an equiva-
lence relation it must satisfy reflexive, symmetric, and transitive properties. The relation is reflexive as for
any x, x− x = 0 which is rational. The relation is symmetric as x− y = −(y − x) and sign does not affect
rationality. We will now prove transitivity. If x ≈ y and y ≈ z then x − y = q0 and y − z = q1 for some
rationals q0, q1. Now (x− y) + (y− z) = q1 + q2 = x− z. Since q0 + q1 is rational, then x ≈ z, so the relation
is transitive. We can conclude that the relation is an equivalence relation.

Lemma II. The set r∩ [0, 1) always contains some element, for any equivalence class r. Every equivalence
class is non-empty so there is some real r. Let [r] denote the largest integer in (r − 1, r], so that

r ≈ r − [r] and r − [r] ∈ [0, 1)

as r − [r] always has the same rationality as r. We can conclude that r − [r] ∈ r ∩ [0, 1).

Lemma III. Since each irrational in r ∈ A was in a separate equivalence class to begin with, adding a ra-
tional to each item does not change any item’s equivalence class. Equivalence classes are disjoint, so we only
need to consider each equivalence class. As r+xn is unique for all n, A+xn is disjoint from all the other sets.

Lemma IV. The infinite union of An contains all elements from (0, 1). For any irrational r ∈ (0, 1), there
is an irrational in r0 ∈ A where r0 − r ∈ Q, as A contains every irrational form shifted into [0, 1). Then
r − r0 = xn for some n, and r0 ∈ An. The right inclusion is simple. Since A ⊂ [0, 1], and the rationals xn

1https://en.wikipedia.org/wiki/Axiom_of_choice
2The Axiom of Choice informally states that for any collection of non-empty bins (even uncountable ones), it is possible to

construct a set containing an element from each bin.
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range from (−1, 1), all numbers in any An range from (−1, 2).

Remark I. Intuitively, the equivalence classes of x ≈ y are cosets r = r+Q which contain all the numbers
a rational distance from r. For any rational q, q = q + Q = Q = 0. For any irrational r, r = r + Q. If
x = r + q0 ∈ r + Q, x ≈ y if and only if y ∈ r + Q. Equivalence classes partition the set they are defined on
into disjoint non-empty sets, and the proof can be found in some abstract algebra textbook.
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